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➢ Introduction, fundamentals and basic properties of signals and systems, 

definition of open loop and closed loop systems, mathematical models 

of physical systems (mechanical, electrical, electromechanical systems 

…), control system components, block diagram simplification, signal 

flow graph, state variable models, Z-Transform and its properties, 

solving difference equations, pulse transfer function of discrete system, 

Fourier transforms, continuous and discrete signal analysis, transient 

response of first and second order control systems, real life applications 

such as analog and digital filters, introduction to basics of digital signal 

processor (DSP) and its features and capabilities of commercial 

applications.
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Example





By Newton’s Law
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Example: Transfer function of the Mass-damper-spring system

State Space 
Equation

Transfer Function
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As another example of the state variable characterization

of a system, consider the RLC circuit shown in the

following figure.

u(t)

Current 

source
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The state of this system

can be described in terms

of a set of variables [x1 x2],

where x1 is the capacitor

voltage vc(t) and x2 is equal

to the inductor current iL(t).

This choice of state

variables is intuitively

satisfactory because the

stored energy of the

network can be described

in terms of these variables.



Therefore x1(t0) and x2(t0) represent the total initial energy of the network

and thus the state of the system at t=t0.

Utilizing Kirchhoff’s current low at the junction, we obtain a first order

differential equation by describing the rate of change of capacitor voltage

L
c

c i)t(u
dt

dv
Ci −==

Kirchhoff’s voltage low for the right-hand loop provides the equation

describing the rate of change of inducator current as

cL
L viR

dt

di
L +−=

The output of the system is represented by the linear algebraic equation

)t(iRv L0 =



We can write the equations as a set of two first order differential

equations in terms of the state variables x1 [vC(t)] and x2 [iL(t)] as follows:
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The output signal is then 201 xR)t(v)t(y ==

Utilizing the first-order differential equations and the initial conditions of

the network represented by [x1(t0) x2(t0)], we can determine the system’s

future and its output.

The state variables that describe a system are not a unique set, and

several alternative sets of state variables can be chosen. For the RLC

circuit, we might choose the set of state variables as the two voltages,

vC(t) and vL(t).



In an actual system, there are several choices of a set of state variables

that specify the energy stored in a system and therefore adequately

describe the dynamics of the system.

The state variables of a system characterize the dynamic behavior of a

system. The engineer’s interest is primarily in physical, where the

variables are voltages, currents, velocities, positions, pressures,

temperatures, and similar physical variables.

The State Differential Equation:

The state of a system is described by the set of first-order differential

equations written in terms of the state variables [x1 x2 ... xn]. These

first-order differential equations can be written in general form as
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Thus, this set of simultaneous differential equations can be written in 

matrix form as follows:
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n: number of state variables, m: number of inputs.

The column matrix consisting of the state variables is called the state

vector and is written as
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The vector of input signals is defined as u. Then the system can be

represented by the compact notation of the state differential equation as

uBxAx +=
This differential equation is also commonly called the state equation. The

matrix A is an nxn square matrix, and B is an nxm matrix. The state

differential equation relates the rate of change of the state of the system

to the state of the system and the input signals. In general, the outputs of

a linear system can be related to the state variables and the input signals

by the output equation

uDxCy +=
Where y is the set of output signals expressed in column vector form.

The state-space representation (or state-variable representation) is

comprised of the state variable differential equation and the output

equation.
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We can write the state variable differential equation for the RLC circuit as

and the output as

 xR0y =

The solution of the state differential equation can be obtained in a

manner similar to the approach we utilize for solving a first order

differential equation. Consider the first-order differential equation

buaxx +=

Where x(t) and u(t) are scalar functions of time. We expect an exponential

solution of the form eat. Taking the Laplace transform of both sides, we

have
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The inverse Laplace transform of X(s) results in the solution 
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We expect the solution of the state differential equation to be similar

to x(t) and to be of differential form. The matrix exponential function

is defined as
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which converges for all finite t and any A. Then the solution of the

state differential equation is found to be
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where we note that [sI-A]-1=ϕ(s), which is the Laplace transform of

ϕ(t)=eAt. The matrix exponential function ϕ(t) describes the unforced

response of the system and is called the fundamental or state

transition matrix.
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THE TRANSFER FUNCTION FROM THE STATE EQUATION

The transfer function of a single input-single output (SISO) system can

be obtained from the state variable equations.

uBxAx +=

xCy =

where y is the single output and u is the single input. The Laplace

transform of the equations

)s(CX)s(Y

)s(UB)s(AX)s(sX

=

+=

where B is an nx1 matrix, since u is a single input. We do not include

initial conditions, since we seek the transfer function. Reordering the

equation
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Therefore, the transfer function G(s)=Y(s)/U(s) is

B)s(C)s(G =
Example:

Determine the transfer function G(s)=Y(s)/U(s) for the RLC circuit as

described by the state differential function
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Remark : the choice of states is not unique. 
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ANALYSIS OF STATE VARIABLE MODELS USING MATLAB

Given a transfer function, we can obtain an equivalent state-space

representation and vice versa. The function tf can be used to convert a

state-space representation to a transfer function representation; the

function ss can be used to convert a transfer function representation to a

state-space representation. The functions are shown in Figure 4, where

sys_tf represents a transfer function model and sys_ss is a state space

representation.

Linear system model conversion

State-space object
DuCxy

BuAxx

+=

+=

sys=ss(A,B,C,D)

DuCxy

BuAxx

+=

+= )s(U)s(G)s(Y =

sys_ss=ss(sys_tf)

sys_tf=tf(sys_ss)

)s(U)s(G)s(Y =
DuCxy

BuAxx

+=

+=

The ss function



For instance, consider the third-order system 

6s16s8s
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We can obtain a state-space representation using the ss function. The state-

space representation of the system given by G(s) is

num=[2 8 6];den=[1 8 16 6];

sys_tf=tf(num,den)

sys_ss=ss(sys_tf)

Matlab code Transfer function:

2 s^2 + 8 s + 6

----------------------

s^3 + 8 s^2 + 16 s + 6

a = 

x1    x2    x3

x1    -8    -4  -1.5

x2     4     0     0

x3     0     1     0

b = 

u1

x1   2

x2   0

x3   0

c = 

x1    x2    x3

y1     1     1  0.75

d = 

u1

y1   0

Continuous-time model.

Answer
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1/s

-8

4
x1 1/s 1 1/s

x3 Y(s)

1

-4
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2
R(s)

-8

1/s
x2 1/s 0.75

1

1

Block diagram with x1 defined as the leftmost state variable. 
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We can use the function expm to compute the transition matrix for a

given time. The expm(A) function computes the matrix exponential. By

contrast the exp(A) function calculates ea
ij for each of the elements aijϵA.
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For the RLC network, the state-space representation is given as:  
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The initial conditions are x1(0)=x2(0)=1 and the input u(t)=0. At t=0.2, the 

state transition matrix is calculated as  

>>A=[0 -2;1 -3], dt=0.2; Phi=expm(A*dt)

Phi =

0.9671   -0.2968

0.1484    0.5219



The state at t=0.2 is predicted by the state transition method to be 
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The time response of a system can also be obtained by using lsim

function. The lsim function can accept as input nonzero initial

conditions as well as an input function. Using lsim function, we can

calculate the response for the RLC network as shown below.

t

u(t)

DuCxy

BuAxx

+=

+=

System

Arbitrary Input Output

t

y(t)

y(t)=output response at t

T: time vector

X(t)=state response at t

t=times at which 

response is 

computed
Initial conditions

(optional)

u=input

[y,T,x]=lsim(sys,u,t,x0)



clc;clear

A=[0 -2;1 -3];B=[2;0];C=[1 0];D=[0];

sys=ss(A,B,C,D)   %state-space model

x0=[1 1]; %initial conditions

t=[0:0.01:1];

u=0*t;  %zero input

[y,T,x]=lsim(sys,u,t,x0);

subplot(211),plot(T,x(:,1))

xlabel('Time (seconds)'),ylabel('X_1')

subplot(212),plot(T,x(:,2))

xlabel('Time (seconds)'),ylabel('X_2')

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Time (seconds)

X
1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Time (seconds)

X
2

Matlab code

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

Time (seconds)

X
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.6

0.8

1

Time (seconds)

X
2

u=3*t

u=0*t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

Time (seconds)

X
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.7

0.8

0.9

1

Time (seconds)

X
2

u=3*exp(-2*t)



With Our Best Wishes

Signals and Systems 

Course Staff
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