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Experimental/Oral: 25%.
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the Web and MATLAB, 3rd ed., Pearson Hihgher Education, 2006.

2- Beréjlagwin C. Kuo " Automatic control systems” 9t ed., John Wiley & Sons,
Inc. 2010.

3- Katsuhiko Ogata, "Modern Control Engineering”, 4 Edition, 2001,




Course Description

» Introduction, fundamentals and basic properties of signals and systems,
definition of open loop and closed loop systems, mathematical models
of physical systems (mechanical, electrical, electromechanical systems
...), control system components, block diagram simplification, signal
flow graph, state variable models, Z-Transform and its properties,
solving difference equations, pulse transfer function of discrete system,
Fourier transforms, continuous and discrete signal analysis, transient
response of first and second order control systems, real life applications
such as analog and digital filters, introduction to basics of digital signal
processor (DSP) and its features and capabilities of commercial
applications.
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By Newton's Law
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State Space
Equation

X, 0 1 Ty, 0
X=Ax+Bu For example : L}: _L _£ L}L 10
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y =Cx+ Du
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Transfer Function

G(s) = Ys) For example : G(s) = ;s + by

U (s) a,s° +a,S+a,

Example: Transfer function of the Mass-damper-spring system
d’y
dt”
Ms?Y (S) +bsY(s) + kY (s) =U (s)
Y (s) ~G(s)=— 1

U (s) Ms® + bs+k

M

dy B
+bdt+ky—u(t) X=[x1 XZ]T
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As another example of the state variable characterization
of a system, consider the RLC circuit shown in the

following figure.
The state of this system
_ can be described in terms
M of a set of variables [x; X,],
i l where x, is the capacitor
c L .
u(t) M R v voltage_ vV (t) and X, Is equal
Ve to the inductor current i (t).
This choice of state
variables IS intuitively
satisfactory because the
stored energy of the
network can be described
in terms of these variables.

Current
source




Therefore x,(ty) and X,(t,) represent the total initial energy of the network
and thus the state of the system at t=t,.

Utilizing Kirchhoff’s current low at the junction, we obtain a first order
differential equation by describing the rate of change of capacitor voltage

dv,
dt

Kirchhoff’s voltage low for the right-hand loop provides the equation
describing the rate of change of inducator current as

1. =C

C

=u(t)—1_

diy _
dt

The output of the system is represented by the linear algebraic equation

—-R1I, +V,

Vo =R, (1)



We can write the equations as a set of two first order differential
equations in terms of the state variables x; [v(t)] and x, [i, (t)] as follows:

dv, :
C q ZU(t)—lL > > %:_£X2+£u(t)
C C

t dt
di, dx, — Ty %
LE__RIL_I_VC = > dt I_ 1 I_ 2

The output signal is then Y, (t) =V, (t) =R X,

Utilizing the first-order differential equations and the initial conditions of

the network represented by [X;(ty) X,(ty)], we can determine the system’s
future and its output.

The state variables that describe a system are not a unique set, and
several alternative sets of state variables can be chosen. For the RLC

circuit, we might choose the set of state variables as the two voltages,
Ve(t) and v (1).



In an actual system, there are several choices of a set of state variables
that specify the energy stored in a system and therefore adequately
describe the dynamics of the system.

The state variables of a system characterize the dynamic behavior of a
system. The engineer’s interest is primarily in physical, where the
variables are voltages, currents, velocities, positions, pressures,
temperatures, and similar physical variables.

The State Differential Equation:

The state of a system is described by the set of first-order differential
equations written in terms of the state variables [x; X, ... X,]. These
first-order differential equations can be written in general form as

X, =a, X, +a,X, +...a,,X, +b,u, +---b, U_
X, =8, X, +8,X, +...8,, X, +b,u, +---b, u_

X, =a, X, +a.,X,+...a, X, +b U +---b_u_



Thus, this set of simultaneous differential equations can be written in
matrix form as follows:

X1 d;; A oo Ay X1 — b b ar T
11 1m U,
d| X, . Ay Gyttt oy || Xy . .
a =\ . ) +
b b u
| Mn1 nm_| [ ¥ m_]
_Xn_ _anl A, v ann_ _Xn_

n: number of state variables, m: number of inputs.

The column matrix consisting of the state variables is called the state
vector and is written as




The vector of input signals is defined as u. Then the system can be
represented by the compact notation of the state differential equation as

X=AX+BuU

This differential equation is also commonly called the state equation. The
matrix A is an nxn square matrix, and B is an nxm matrix. The state
differential equation relates the rate of change of the state of the system
to the state of the system and the input signals. In general, the outputs of
a linear system can be related to the state variables and the input signals
by the output equation

y=CXx+Du

Where y is the set of output signals expressed in column vector form.
The state-space representation (or state-variable representation) is
comprised of the state variable differential equation and the output
equation.




We can write the state variable differential equation for the RLC circuit as

0 - 1]
X = Clix+|clu(t)
1 R
- = 0
L L _ - T
and the output as
y=[0 R]x

The solution of the state differential equation can be obtained in a
manner similar to the approach we utilize for solving a first order
differential equation. Consider the first-order differential equation

X =axX +bu

Where x(t) and u(t) are scalar functions of time. We expect an exponential
solution of the form e& Taking the Laplace transform of both sides, we
have



sX(s)—X, =aX(s)+bU(s)

therefore,

X (0) N b
s—a S—a

X(S) = U(s)

The inverse Laplace transform of X(s) results in the solution

t
X (1) = e*x(0) + j e*™pu(r)dr
0

We expect the solution of the state differential equation to be similar
to x(t) and to be of differential form. The matrix exponential function
Is defined as
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which converges for all finite t and any A. Then the solution of the
state differential equation is found to be

t
X(t) = e*'x(0) + [ e~ PBu(r) dr
0

X(s) = [sl-A["x(0) +[s1-A]'BU(s)

where we note that [sl-A]"1=¢(s), which is the Laplace transform of
$(t)=eAl. The matrix exponential function ¢(t) describes the unforced

response of the system and is called the fundamental or state
transition matrix.

x(t) = (1) X(0) + j o(t—t)Bu(t)dt



THE TRANSFER FUNCTION FROM THE STATE EQUATION

The transfer function of a single input-single output (SISO) system can
be obtained from the state variable equations.

X=AX+BuU
y=CX

where y is the single output and u is the single input. The Laplace
transform of the equations

sX(s) = AX(s) + B U(s)
Y(s) = CX(s)
where B is an nx1 matrix, since u is a single input. We do not include

initial conditions, since we seek the transfer function. Reordering the
equation



[sI—A]X(s) =BU(s)
X(s) =[sl - A['BU(s) = ¢(s)BU(s)
Y (s) =Co(s)BU(s)

Therefore, the transfer function G(s)=Y(s)/U(s) is

G(s) =Co(s)B

Example:

Determine the transfer function G(s)=Y(s)/U(s) for the RLC circuit as
described by the state differential function

1
x+|clu , y=[0 R]x
0

|00+

0
1
L
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Then the transfer function is
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“exist a mapping X,(t) =e () ==——>

Remark : the choice of states is not unique.
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ANALYSIS OF STATE VARIABLE MODELS USING MATLAB

Given a transfer function, we can obtain an equivalent state-space
representation and vice versa. The function tf can be used to convert a
state-space representation to a transfer function representation; the
function SS can be used to convert a transfer function representation to a
state-space representation. The functions are shown in Figure 4, where
sys_tf represents a transfer function model and sys_ss is a state space
representation.

X= A B Y(5)=G(5)U)
_ X =AX+Bu y=Cx+Du
State-space object
y =Cx+Du 4
T Sys_ss=ss(sys_tf)
l sys_tf=tf(sys_ss)
(A,B,C,D) : :
sys=ss(A,B,C, .
Y(s) = G(s)U(s) X=Ax+Bu
The ss function y=Cx+Du

Linear system model conversion



For instance, consider the third-order system

Y(s)  25°+8s+6
R(s) s°+8s°+16s+6

G(s) =

We can obtain a state-space representation using the ss function. The state-
space representation of the system given by G(s) is

Transfer function:
Matlab code PSAD 48 S+ 6

s"3+8s"2+16s+6

num=[2 8 6];den=[1 8 16 6];
Answer

sys_tf=tf(num,den) T L o
> s G
x2 4 0 O

Sys_Sss=ss(sys_tf)

b=
8 -4 -1.5] (2] a2
A=l 4 0 0 |,B=|0 x3 0
B O 1 O i _O_ C; xll xi ox735

d=
ul

C=[1 1 0.75]and D =|0] v 0

Continuous-time model.



-8 -4 -15 2
0 1 0 0

C=[1 1 0.75]and D =|0]

1
> 1
ﬁ. 2 /s > 4 —|1/s — 1 —| 1ls = 0.75
B
-4
-1.5

Block diagram with x, defined as the leftmost state variable.



t
X (t) = e”'x(0) + j eAIB (1) dr
0

x (1) = d(t) X (0) + jq)(t _1)Bu(r)dt

We can use the function expm to compute the transition matrix for a
given time. The expm(A) function computes the matrix exponential. By
contrast the exp(A) function calculates e¥; for each of the elements a;€eA.

For the RLC network, the state-space representation is given as:

A=l 7% B2|? .C=[1 0]and D=[0]
1 -3 0

The initial conditions are x,(0)=x,(0)=1 and the input u(t)=0. At t=0.2, the
state transition matrix is calculated as Phi =

>>A=[0 -2;1 -3], dt=0.2; Phi=expm(A*dt) 0.9671 -0.2968
0.1484 0.5219



The state at t=0.2 is predicted by the state transition method to be

x,]  [0.9671 -0.2968][x,| [0.6703
X,| . 101484 05219 ||x,| . |0.6703

t=0.2 t=0

The time response of a system can also be obtained by using Isim
function. The Isim function can accept as input nonzero initial
conditions as well as an input function. Using Isim function, we can
calculate the response for the RLC network as shown below.

u(t) System y(t)
Arbitrary Input X = AX+Bu | Output

—
y=Cx+Du

»
»

t

t=times at which
y(t)=output response at t response is
computed

Initial conditions
T: time vector

(optional)

X(t)=state response at t
\ u=input /
\

[y, T.x]=lsim(sys,u,t,x0)




Matlab code

clc;clear
A=[0 -2;1 -3];B=[2;0],C=[1 0], D=[0];
sys=ss(A,B,C,D) %state-space model
x0=[1 1]; %initial conditions
t=[0:0.01:1];

u=0*t; %zero input

[y, T.x]=Isim(sys,u,t,x0);
subplot(211),plot(T,x(:,1))
xlabel('Time (seconds)'),ylabel("X_1")
subplot(212),plot(T,x(:,2))
xlabel('Time (seconds)'),ylabel("X_2")
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With Our Best Wishes
Signals and Systems
Course Staff
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